Essential Guide

The state of the enterprise cloud and prepping for AWS re:Invent 2013

A comprehensive collection of articles, videos and more, hand-picked by our editors

big data analytics

Big data analytics enables organizations to analyze a mix of structured, semi-structured and unstructured data in search of valuable business information and insights.

Big data analytics is the process of examining large data sets containing a variety of data types -- i.e., big data -- to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful business information. The analytical findings can lead to more effective marketing, new revenue opportunities, better customer service, improved operational efficiency, competitive advantages over rival organizations and other business benefits.

The primary goal of big data analytics is to help companies make more informed business decisions by enabling data scientists, predictive modelers and other analytics professionals to analyze large volumes of transaction data, as well as other forms of data that may be untapped by conventional business intelligence (BI) programs. That could include Web server logs and Internet clickstream data, social media content and social network activity reports, text from customer emails and survey responses, mobile-phone call detail records and machine data captured by sensors connected to the Internet of Things. Some people exclusively associate big data with semi-structured and unstructured data of that sort, but consulting firms like Gartner Inc. and Forrester Research Inc. also consider transactions and other structured data to be valid components of big data analytics applications.

Big data can be analyzed with the software tools commonly used as part of advanced analytics disciplines such as predictive analytics, data mining, text analytics and statistical analysis. Mainstream BI software and data visualization tools can also play a role in the analysis process. But the semi-structured and unstructured data may not fit well in traditional data warehouses based on relational databases. Furthermore, data warehouses may not be able to handle the processing demands posed by sets of big data that need to be updated frequently or even continually -- for example, real-time data on the performance of mobile applications or of oil and gas pipelines. As a result, many organizations looking to collect, process and analyze big data have turned to a newer class of technologies that includes Hadoop and related tools such as YARN, MapReduce, Spark, Hive and Pig as well as NoSQL databases. Those technologies form the core of an open source software framework that supports the processing of large and diverse data sets across clustered systems.

In some cases, Hadoop clusters and NoSQL systems are being used as landing pads and staging areas for data before it gets loaded into a data warehouse for analysis, often in a summarized form that is more conducive to relational structures. Increasingly though, big data vendors are pushing the concept of a Hadoop data lake that serves as the central repository for an organization's incoming streams of raw data. In such architectures, subsets of the data can then be filtered for analysis in data warehouses and analytical databases, or it can be analyzed directly in Hadoop using batch query tools, stream processing software and SQL on Hadoop technologies that run interactive, ad hoc queries written in SQL.

Potential pitfalls that can trip up organizations on big data analytics initiatives include a lack of internal analytics skills and the high cost of hiring experienced analytics professionals. The amount of information that's typically involved, and its variety, can also cause data management headaches, including data quality and consistency issues. In addition, integrating Hadoop systems and data warehouses can be a challenge, although various vendors now offer software connectors between Hadoop and relational databases, as well as other data integration tools with big data capabilities.

This was first published in October 2014

Continue Reading About big data analytics

Pro+

Features

Enjoy the benefits of Pro+ membership, learn more and join.

Essential Guide

The state of the enterprise cloud and prepping for AWS re:Invent 2013
Related Discussions

Margaret Rouse asks:

What kind of big data analytics challenges does your organization face? And what are you doing to overcome them?

0  Responses So Far

Join the Discussion

9 comments

Oldest 

Forgot Password?

No problem! Submit your e-mail address below. We'll send you an email containing your password.

Your password has been sent to:

-ADS BY GOOGLE

File Extensions and File Formats

Powered by:

SearchDataManagement

SearchAWS

SearchContentManagement

SearchCRM

SearchOracle

SearchSAP

SearchSQLServer

Close