News Stay informed about the latest enterprise technology news and product updates.

Future BI Could Perfect Labor’s End, Part 1

This Content Component encountered an error

It’s indisputable that technology is displacing many of today’s jobs. The question is: what should, or can, we do about it? This series explores the possible consequences of this shift and how information use and decision making support can, and should, drive a better outcome through enhanced and expanded Business Intelligence.

I’ve written occasionally and at length in a Feb-Mar 2014 series on the impact of technology advances on employment. My basic thesis was—and is—as follows. Mass production and competition, facilitated by ever improving technology, have been delivering better and cheaper products and improving many people’s lives (at least in the developed world) for nearly two centuries. Capital, in the form of technology, and people–labor—have worked together relatively well in the consumer society to produce goods that people purchase largely using earnings from their labor. Until now…

As technology grows exponentially better, the return on capital investment in automation technology is improving significantly in comparison to return on investment in labor. The primary goal of the capitalist model is to maximize return on investment. As a result, an ever greater range of jobs become open to displacement by technology. To me, at least, the above logic is largely unarguable. For example, driverless vehicles, from trucks to automobiles, are set to eliminate some 4 million jobs in the US alone. Any complacency that only manual/physical jobs will be displaced by automation is erroneous; many administrative and professional roles are already being outsourced to rapidly improving software solutions. Across the entire gamut of industries and job roles, technology—both hardware and software; and, increasingly, a combination of both—is proving better and/or faster than human labor, and is indisputably cheaper, particularly in developed consumer economies.

What are the possible outcomes from such a dramatic shift in the relative roles and importance of capital (technology) and labor (people)? Let’s keep it simple and restrict the discussion to three main stances that I’ll introduce briefly here, but consider later in depth:

  1. Head in the sand: the belief of many mainstream technologists and economists that we’re simply going through an adjustment period, after which “normal service will resume” in the market
  2. Dystopian: the story that our economic and social system is so deeply embedded and increasingly fragile that the shock of such change will lead to a rapid descent to a “Mad Max” world order
  3. (Somewhat) Utopian: the possibility that we can create a better world for everyone through automation and the transformation of our current economic and social paradigms

Of course, my preference is for option three above! But, how might it work and how would we get there? I believe that judicious application of many of the principles and approaches of Business Intelligence (BI), data warehousing, big data governance in the broadest sense of the concepts, will play a vital role in the new world, and particularly in the transition to it. BI et al. is fundamentally about how decisions are made and how the people who make them can be supported. And business includes the business of government. In the old, narrow sense, BI meant simply providing data from internal systems to decision makers. In the widest sense, which I call “Business unIntelligence”, it encompasses the full scope of such decision making support, from the ingestion and contextualization of all real-world information to the psychological and sociological aspects involved in real humans making optimal decisions. Decisions that increasingly need to go beyond the bottom line of profit.

As of now, I’m not clear where this discussion will take us. But I’d love to incorporate your views and comments. In the next post, I’ll explore the above-mentioned possible stances on the effects of technological unemployment.

Part 2 tackles the head in the sand stance.