self-service business intelligence (BI)

Self-service business intelligence (BI) is an approach to data analytics that enables business users to access and work with corporate data even if they don't have a background in BI, statistical analysis or data mining. Self-service BI tools allow users to filter, sort, analyze and visualize data without involving an organization's BI and IT teams.

Organizations implement self-service BI capabilities to make it easier for employees from executives to frontline workers to get useful business insights from the data collected in BI systems. The objective is to drive more informed decision-making that results in positive business outcomes, such as increased efficiency, customer satisfaction gains and higher revenue and profits.

Traditional vs. self-service BI

With traditional BI tools and processes, the BI team or IT controls access to analytics data and does the data analysis work for business users. In this approach, users request new analytical queries, which a BI analyst or other BI professional writes and runs for them. Similarly, users ask for new reports and BI dashboards by submitting a list of business requirements or through a requirements-gathering process initiated by BI staffers.

Once a project is approved -- which can take weeks in some cases -- the BI team prepares the required data or, if need be, works with IT to extract it from source systems, transform and cleanse it, and load it into a data warehouse or other data store. The BI team then creates queries to produce the requested analytics results and designs the dashboard or report to display the information.

Conversely, a self-service BI environment enables business analysts, executives and other users to run queries themselves and create their own data visualizations, dashboards and reports. Some of those users may not be tech-savvy; therefore, it's imperative that the user interface (UI) in self-service analytics software be intuitive and easy to use. User-friendly tools and navigation should address the needs of both casual users, who may only need to view data, and power users with more tech skills.

Once the IT department and the BI team have set up the data warehouse or data marts for a self-service BI system, business users should be able to query the data, create customized dashboards and reports, and share them with other users. Ideally, training is done to help self-service users understand what data is available and how that information can be queried and used to make data-driven business decisions. The members of the BI team may also support users as needed on an ongoing basis.

Traditional BI vs. self-service BI
Self-service BI lets business users access, model and analyze data, which can lead to faster, more agile responses to data insights than is feasible with traditional BI.

Benefits of self-service BI

The expanded data access and analytics capabilities that self-service BI provides can benefit an enterprise in a variety of ways. The potential benefits include:

  • Better use of BI and IT resources. Because business users can do their own ad hoc analysis, self-service BI frees the organization's BI and IT teams from creating the majority of queries, visualizations, dashboards and reports. That allows them to focus on higher-value tasks that require more technical skills, such as curating data sets for business users and creating complex queries -- a shift that can help make the BI and IT teams more efficient and effective.
  • Faster data analysis and decision-making. Self-service capabilities help reduce bottlenecks in the BI program by shifting analytics work to business users instead of a small number of BI professionals. That in turn brings greater speed to business processes, as users can more quickly access and analyze the data that they need to make decisions and take actions.
  • A data-driven organization. As business executives, managers and workers advance their use of BI tools and mature their analytical prowess, self-service systems can create a fully data-driven culture in both the C-suite and business operations.
  • Competitive advantages. The expanded use of data and accelerated decision-making can make an organization more agile as a whole, which may help it create or maintain a competitive advantage in the marketplace -- particularly if its use of self-service tools is more substantial and successful than similar efforts by business rivals.

Challenges of self-service BI

Self-service BI deployments also pose various challenges for organizations. The hurdles and roadblocks to a successful self-service initiative include:

  • Lack of adoption by business users. Like traditional BI environments, self-service ones can be held back by resistance from business executives and managers who want to continue to base decisions on their own knowledge and intuition. Self-service BI applications that aren't user-friendly may also discourage user adoption.
  • Inaccurate analytics results. Self-service queries can produce bad findings due to incomplete data sets or data errors that aren't identified and fixed. There's also a risk of getting inconsistent information if separate users work with different versions of the same data or filter and prepare it for analysis in different ways. These issues can lead to confusion over BI findings and, ultimately, faulty decision-making.
  • Data security, privacy and ethics issues. The expanded data access that self-service BI provides can cause problems if strong data security protections and an effective data governance policy aren't put in place. For example, unauthorized users could access sensitive data, or data could be misused in ways that violate data privacy regulations and corporate ethics standards.
  • Uncontrolled deployments. Self-service BI environments can become chaotic without some level of centralized monitoring and oversight by the BI team. If business units deploy BI systems on their own with no coordination or controls, inconsistent data silos, multiple BI tools and runaway costs can make it difficult to scale self-service capabilities across the enterprise effectively and efficiently.

To avoid or overcome such challenges, an organization must start with a well-planned BI strategy, including a solid BI architecture that establishes technology and governance standards. Those foundational elements can help ensure that the organization has the right data sets to produce accurate analytics results and the infrastructure to support enterprise-wide use of self-service BI tools.

Additionally, a BI training program should educate workers not only on how to use self-service systems, but also on how to find the business data they need, manipulate it to gain the insights they're seeking and create effective data visualizations, dashboards and reports. Meanwhile, the data governance policy should define key data quality metrics; data management, access and usage policies; procedures for sharing reports and dashboards; and how data security and privacy protections will be maintained.

Examples of self-service BI tools

Tableau, Qlik and Tibco Spotfire were among the first vendors of self-service BI and data visualization tools. Now, software vendors that once offered traditional BI tools for skilled analysts also provide self-service ones. In fact, consulting firm Gartner characterizes a modern analytics and BI platform as a set of easy-to-use tools that support the full data analysis workflow with an emphasis on self-service capabilities and augmented analytics features designed to help users find, prepare and analyze data.

Microsoft Power BI is another prominent self-service BI platform. Some of the many other self-service options available to organizations come from IBM, Oracle, SAP and SAS, as well as vendors that include Domo, Google's Looker unit, Information Builders, MicroStrategy, Pyramid Analytics, Sisense, ThoughtSpot, Yellowfin and Salesforce, which offers its own BI tools and also acquired Tableau in 2019.

Ease of use, sophistication and features differ for each vendor's self-service BI tool. For example, some platforms may be primarily used for simple dashboards and visualizations rather than more complicated data analysis and associated tasks, such as self-service data preparation, data discovery and interactive visual exploration.

Self-service BI trends to watch

Augmented analytics technologies are increasingly becoming core components of self-service BI platforms. They include natural language querying capabilities that eliminate the need to write queries in SQL or other programming languages, as well as AI and machine learning algorithms that can identify relevant data for users to analyze, explain the meaning of data elements to them, automate the data preparation process and suggest appropriate charts and other types of data visualizations. Gartner predicts that augmented analytics features will be "ubiquitous" in BI tools by 2022.

Other notable self-service BI trends include the rollout of low-code and no-code development tools by a growing number of BI vendors to simplify the process of creating BI applications, plus the addition of support for multi-cloud environments to BI platforms. Overall, the use of the cloud for BI and analytics is on the rise -- in its 2020 "Magic Quadrant for Analytics and Business Intelligence Platforms" report, Gartner said most new spending on BI systems is for cloud deployments.

From a general standpoint, the Business Application Research Center (BARC), an analyst firm that primarily focuses on BI and data management software, said 2,865 users, consultants and vendors it surveyed in 2020 ranked self-service BI fifth on a list of the most important BI trends. Data discovery and visualization and establishing a data-driven culture, both closely related to self-service BI initiatives, were No. 2 and No. 3, according to BARC's "BI Trend Monitor 2020" report. Data quality and master data management was first on the list, while data governance was fourth.

This was last updated in July 2020

Continue Reading About self-service business intelligence (BI)

Dig Deeper on Self-service and collaborative business intelligence